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Abstract— Developing global policies for humanoid robots
using dynamic programming is difficult because they have many
degrees of freedom. We present a formalism whereby a value
function for a humanoid robot can be approximated using the
known value functions of similar systems. These similar systems
can include approximate models of the robot with reduced di-
mensionality or trajectories derived from human motion capture
data. Once an approximate value function is known, a local
controller is used to compute control signals. The approximate
value function provides information about the global strategies
that should be used to solve the task. The local controller provides
complementary information about the robot’s dynamics. We
present an implementation of this strategy and simulation results
generated by this implementation.

I. INTRODUCTION

We are interested in humanoid robots that use human-like

motions to perform difficult balance tasks. Using human-like

motions allows robots to appear more natural and may improve

their social acceptance. Additionally, a robot that uses human-

like motions may be better able to model a human subject in

experiments or tasks where a human subject cannot be used or

is undesirable. Finally, controllers that are intended to produce

human-like motions are well suited to learning from observing

humans completing similar tasks.

We created a controller that allows a simulation of the

Sarcos Primus humanoid biped (Fig. 1) to balance on a Bongo

Board in the presence of random perturbations. A Bongo

Board is a balance toy consisting of a plank resting on a

cylinder that is in rolling contact with both the ground and

the board (Fig. 2). Additionally, we describe a general feature-

based framework for transferring the global structure of value

functions between systems and for combining multiple value

function approximations.

Motion capture data and dynamic programming have both

been used successfully to generate motion for animated human

figures [1], [2], [3] and to control robots [4]. However, each

of these tools is typically limited to solving a specific type

of problem or producing a specific type of solution. Dynamic

programming produces global policies but is, in general, lim-

ited to problems with a small number of degrees of freedom.

Motion capture-based methods are able to produce motion

for systems with many degrees of freedom, but are typically

unable to control the system when the state is far from any

of the observed states. Our approach combines motion capture

from a human subject balancing on the Bongo Board with a

Fig. 1. Sarcos Primus hydraulic biped and Sarcos Primus simulation model

Fig. 2. Bongo Board balance toy

dynamic programming solution for a reduced representation

of the robot to produce a controller in the full state space.

The intent of our approach is to capture information about

the global strategies used by these similar systems and then

apply that information to solving the global control problem

for the humanoid robot. If the systems are defined such that

an equivalence between the dynamics can be shown, it is

possible to project the value function from one system onto

a manifold embedded in the state space of the other without

approximation. In the more general case where the similarity

between the systems is based only on intuition, as in the

case of the similarity between a human and a humanoid

robot, an approximate value function can still be defined.

However, no guarantees can be made about the validity of

this approximation. Intermediate cases between these extremes

may exist where limited bounds on the approximated value

function can be given.

Once an approximate value function has been defined,



the control signals that should be sent to the robot must

be determined. If sufficient guarantees are provided for the

approximation bounds on the value function, a local solution

to the Bellman equation can be used, as when deriving a policy

directly from the true value function. In the more general

case where the approximated value function represents only

an educated guess at the true value function, less local control

methods, such as model predictive or receding horizon control,

can be used to avoid instability resulting from local errors in

the value function.

More generally, we define a formalism describing a method

for transferring global information about solution strategies

between similar systems. This transformation depends on the

identification of key features shared by both systems, and on

estimates of how salient those features are in determining the

value function of the controlled system. We also describe how

this transformation can be implemented for real systems with

many degrees of freedom.

There is a large body of work similar in spirit and method-

ology to our controller design process. Like our work, the

templates and anchors framework used in the RHex project [5]

builds controllers for complex systems based on simplified

representations. The SLIP model of running gait [6] and its

various robotic embodiments [7] as well as virtual model con-

trol [8] are also examples of this approach. Even Zero Moment

Point control [9] can be viewed as a method for representing

the balance of a complex system in a simplified representation

(the ZMP location). The operational space control formulation

and hierarchical control methodologies [10] combine tasks of

differing priority. This approach is similar to the approach

our system uses maintains balance while preferring human-

like movements. Physically based motion transforms [11] are

also similar in many ways to our work, in that they allow

motions observed in motion capture data to be transformed

into a reduced representation, then reconstructed on the full

model. The trajectory generation work in [12] uses PCA

to reduce human motion to a simplified representation, and

showed that optimizations within a behavior specific simplified

representation could produce natural motions. Finally, we

are able to solve the dynamic programming problem in the

reduced representation using the stochastic methods described

in [13], [14].

Section II of this paper describes the framework we use for

transferring value functions between similar systems. Section

III describes the simulations we conducted to demonstrate

this framework. Section IV describes the results of these

simulations. Section V discusses these results and presents

directions for future applications of this framework.

II. GENERAL VALUE FUNCTION TRANSFER

The definitions provided in this section present a framework

for using the known value functions of one or more example

systems to compute an approximation of the unknown value

function for a similar system. In this paper we investigated

two the pairs of similar systems. The first was pair was

two inverted pendulums with slightly different kinematic and

dynamic parameters. The second pair was a two link inverted

pendulum on a Bongo Board and the sarcos biped on the

Bongo Board. The notion of similarity between systems is

intentionally left vague in the general case, although additional

constraints on the quality of the value function approximation

can be given if the similarity between the systems is defined

more strictly. In general, it remains the responsibility of the

control engineer to identify features shared by the example

and target systems and to provide estimates of the salience of

those features in estimating the value function.

A. Defining the Approximate Value Function

We consider a system S and a similar system R. Let xs be

a state of S and xr be a state of R. A value function defined

over the states of R, Vr(xr) is known. We wish to define an

approximation of the value function of S, V̂s(xs) ≈ Vs(xs),
based on Vr. To do this we define a pair of functions, fs and

fr, that map from states in S and R to a common feature space.

These features describe shared attributes of S and R that are

believed to be related to Vr. For example, in the case where S

is a humanoid robot and R is a two link pendulum, relevant

features could include the total kinetic energy, location of the

system’s center of mass, and the angular and linear momenta

of the system.

System S System R

Feature Space

fr(xr)
fv(xs)

fr
-1(fv(xs))

Fig. 3. Illustration of the relationship between the two similar systems, R

and S, and feature space. The region of feature space to which states from
both systems map is shaded magenta, while the regions containing states from
only one system are shaded cyan and white. Arrows indicate the functions
mapping between state and feature spaces.

The feature vector, F , is the conduit through which infor-

mation can move between the two systems. Because there

is no other source of information the problem of finding

V̂s(xs) is equivalent to finding the value function over features,

Vf (fs(xs)). To construct Vf , Vr can be mapped into feature

space by using the inverse of f , Vf r
(F) = Vr(f

−1

r (F)). Note

that because f(xr) may be a many to one mapping Vf r
may

be a one to many mapping.

Furthermore, because f is not an “onto” mapping there

may be areas of feature space over which Vf r
is not defined.

In the example given above, it’s possible that the humanoid

robot can move its center of mass further than the two link

pendulum. When the robot is in such a state the corresponding

feature vector does not correspond to any state of the two link

pendulum.



The value of Vf at points outside the domain of Vf r
should

reflect both an extrapolation of Vf r
and a penalty that increases

with distance from the domain of Vf r
. One possible choice

would be to use a zeroth order extrapolation of Vf r
at the point

on the domain nearest F, nnd(F), and to use a penalty that

is linear in (F − nnd(F)). In our example, this would apply

a penalty to states of the robot with center of mass locations

not achievable by the two link pendulum that was linear in the

distance between the robot’s center of mass and the closest

center of mass location the two link pendulum could achieve.

Inside the domain of Vf r
multiple values can be associated

with a single F. The maximum value in the set Vf r
(F)

is a pessimistic choice consistent with minimax dynamic

programming[4]. In our example, many configurations of the

humanoid robot correspond to a single center of mass location,

in which case the function mapping from robot states to a

feature vector consisting only of the center of mass location

is non-invertible.

It is often the case that the salience of some features or

groups of features will be known to vary predictably with

the state of R. For example, kinetic energy goes to zero at

stable states of the Bongo Board balance problem, but is

not particularly helpful in determining the relative values of

states with kinetic energies in the range typically encountered

during the balance task. The group of features consisting of

the Bongo Board’s state, the kinetic energy of the system, and

the lateral center of mass displacement constitute a sufficient

set of features for determining whether a state of S or R is

stable.

In this case, any state xs for which these elements of f(xs)
match the features of a stable state of R has a known value

of zero, because xs is guaranteed to be a stable goal state.

In this case the other elements of the feature vector have

no salience, in particular, any penalty associated with f(xs)
being outside the domain of Vf r

should go to zero at the

goal states. We define a scalar function W (F) that goes to

zero when F is sufficient to determine Vf exactly. In the

example given, W would go to zero any time the salient group

of features indicated a stable state. When computing Vf the

penalty associated with feature vectors outside the domain of

Vf r
is scaled by W . Choosing the definition of W carefully

is necessary to ensure that stable states of S are local minima

of Vf (f(xs)).

B. Computing the Approximate Value Function

Computing Vf either implicitly or explicitly is prohibitively

difficult in general. An implicit computation of Vf requires

computing the inverse of the multivalued function fr, then

finding the nearest point in feature space for which that inverse

was defined. An explicit table-based computation of Vf would

require a prohibitively large amount of storage space. An

explicit second order approximation of Vf depends on the

composition of fr and Vr . Even if a good sampling point

for approximating Vr is known, as in the case when Vr is the

result of our approximate dynamic programming procedure,

the choice of good sampling points in feature space depends

on the structure of fr.

Rather than compute Vf explicitly we define a projection

P (xs) = xr and a complimentary scalar valued loss function

Pe(xs). For a properly defined P and Pe,

Vf (fs(xs)) ≈ Vr(P (xs)) + Pe(xs)

Because the projection function has no information about the

value of the state it projects to, it cannot select the maximum

valued state of all possible projections with the same loss error.

Additionally, Pe must perform the role of the W salience

function, in that its value is determined not solely by the

magnitude of the projection error, but by the estimated salience

of that error to the value function estimation.

C. Using the Approximate Value Function for Control

Although the approximated value function is believed to be

valid at larger scales, it is generally a poor local model of the

true value function of S. However, there are cases where the

approximate value function is known to be exactly equal to

the true value function, as it is at stable points. If R is the

same dynamic system as S with additional constraints applied

to reduce the available degrees of freedom, then the value

function of R will be exactly equal to the value function of

S if optimal trajectories of S that enter the subspace defined

by those constraints never leave that subspace. Additionally,

if optimal trajectories of S make only small deviations from

the subspace it is reasonable to assume that the value function

of R along the subspace is a good approximation of the value

function of S along that subspace. If the approximated value

function is equal to the true value function then the one step

Bellman equation can be used to determine the correct control

signals to apply to the system.

In the general case, however, it is necessary to use a local

controller with a planning horizon that extends to a range at

which the approximate value function becomes useful.

III. EXAMPLES

We provide examples using this framework to create con-

trollers for various models of the Bongo Board problem. We

initially identify the models used, then describe the features of

each system we considered when implementing the projection

and loss functions between systems. Finally, we describe

the local controllers used to track the global value function

approximations.

A. Models

Our experiments used three dynamic models, a model of the

Bongo Board, a full model of the Sarcos Primus system, and

a reduced dimensionality double pendulum approximation of

the Sarcos Primus system. This section describes the design

of these models.



1) Bongo Board: The Bongo Board is modeled without a

rolling contact between the board and wheel. The model used

is a kinematic chain consisting of a rotational joint followed

by a translational joint. The axes of these joints intersect at a

single point. The axes are also perpendicular to each other and

the gravity vector. Even for small displacements this model

fails to reproduce the translation of the support point due to

the rolling translation of the wheel. Additionally, our physical

Bongo Board has significant rolling friction that is not captured

in our model.

2) Primus Biped: The Sarcos Primus System is a human

scale hydraulic biped. The Primus System includes 34 actuated

degrees of freedom, not including the hands and face. Because

of the high maximum torques and large range of motion at the

joints, the system is able to reproduce many motions observed

in humans accurately. However, the distribution of mass in the

Primus System is not similar to human mass distribution [15].

In particular, the lower half of the legs have proportionately

greater mass than a human, a difference that significantly

influences the dynamics of walking gaits.

We modeled the Primus System using information from

the CAD model of the robot used for its construction. There

are significant differences between this model and the built

robot, such as the presence of hydraulic fluid and hoses.

These additions increase the mass, change its distribution, and

exert unmodeled torques on joints. The model used in our

simulations omitted the finger and face degrees of freedom

for computational efficiency and because our motion capture

data does not include any information about these degrees of

freedom. We consider the model to be a precise kinematic

match to the physical robot, but only a rough match in terms

of dynamics.

3) Reduced Dynamic Model: The reduced model of the

Bongo Board balance task uses a two link inverted pendulum

to represent the body of the balancer. The two link inverted

pendulum model has been used often to represent the human

body in balance tasks [16]. The mass, moment of inertia, and

position of the center of mass of the upper and lower links of

the pendulum are set equal to those of the upper and lower

body of the robot in its reference pose. The length of the lower

link is set to the height of the robot’s torso abduction joint.

These features make it a good example system for determining

the general form of the value function for the full robot.

The pendulum does not represent the closed loop kinematic

constraints present when two feet are placed on the Bongo

Board.

B. Controllers

We implemented LQR controllers for both the reduced and

full models. These controllers required that the system be

linearized about a point at which all steady-state accelerations

could be compensated by static torques. We chose to linearize

the system with torques applied to cancel all accelerations of

the body. These torques decouple the dynamics of the body

so that each degree of freedom couples only with the tilt and

offset of the Bongo Board. In the case of the full model, the

kinematic loop introduced by both feet being in contact with

the board reduced the number of degrees of freedom in the

system by twelve. We identified the linear subspace of possible

time derivatives of the current state, S, at a pose q using the

null space of the Jacobian of the foot constraint with respect

to changes in position:

N = null(J(q)) (1)

S =

(

N 0
0 N

)

(2)

We solved the control problem for the reduced system using

dynamic programming. The particular method we used is

based on the stochastic sampling and update method described

in [14]. Additionally, the Q matrix defining the component of

the objective function computed from the system’s state was

chosen to be the inverse of the PCA basis of the example

motions. The intent of this cost function is to have the dynamic

programming solution mimic the motions made by the human

when possible by applying a large cost to states that are

unlikely to appear in the example data.

IV. RESULTS

We present two simulation results demonstrating our frame-

work. The first result shows a simulation in which a value

function for the reduced model was transferred to a second

version of the reduced model in which the length of the

base link was increased by three percent. We show that the

system was stable under a combination of local receding

horizon control and the approximated value function. The

system was not stable when either component was used in

isolation. The failure of the receding horizon control alone

indicates that the disturbance was sufficiently large that the

extended horizon provided by the receding horizon control

was unable to stabilize the system without the additional

information from the approximate global value function. The

failure of the policy derived directly from the approximated

value function without receding horizon control indicates the

the differences between the two systems are significant enough

that the receding horizon control is necessary. We show both

the cumulative cost of each policy (Fig.4) and the estimated

future cost as a function of time (Fig.5).

The second result shows the Sarcos Primus model simula-

tion balancing using a policy derived for the reduced model.

This system is very sensitive to disturbances that move it away

from the manifold on which the approximation is dynamically

equivalent to the full model. We use a computed torque

constraint to keep the system on the manifold where the

reduced system’s dynamics are identical to the full system.

We show the estimated value of the system’s state versus time

as it recovers from a small disturbance (Figs6 and 7). Note

that the system finds a stable state that does not have zero

value under the approximated value function.

V. DISCUSSION

A complex system can be “factored” into many constrained

nonlinear subspaces. These subspaces can be solved by dy-

namic programming exponentially faster than the full system.
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Fig. 4. Cumulative cost of policies generated from receding horizon
control only, the transferred value function only, and the combination of
receding horizon control with the transferred value function. Note that only the
combination of both produces a stabilizing policy for these initial conditions.
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Fig. 5. Estimated value of state as a function of time for the three policies.
Note that only the policy that combines receding horizon control with the
transferred value function is stable for these initial conditions.

When the subspace is a holonomic constraint that permits

only a single degree of freedom, the value function over the

subspace can be found quickly with dynamic programming

methods. The value functions found for these subspaces will

approximate the true value function of the full system well

if optimal trajectories of the full system tend not to diverge

from that subspace [17]. The feature-based value function

approximation described in this paper allows the solutions to

these reduced systems to be combined into an approximate

solution for the entire system.

The performance of the current implementation is severely

limited by our implementation of receding horizon control.

We use Nelder-Mead nonlinear optimization to determine the

torques applied at 0.01 second intervals. In practice, this

Fig. 6. Primus simulation balancing on a Bongo Board model with one limb
in contact
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Fig. 7. Estimated state value versus time for Primus balancing on Bongo
Board.

method limits the viable lookahead horizon to 0.1 seconds or

less. The system must stay close to regions where the value

function is accurate and is unstable for many disturbances.

VI. FUTURE WORK

We described how the objective function in our dynamic

programming solution is based on the principal component

analysis of the human motion capture data projected onto the

reduced representation. This choice of objective function was

intended to create solutions that used motions similar to those

observed in the motion capture data. A more robust approach

to achieving this goal may be to compute the cost functions

for both state offset and applied torques using the motion of

the full model. However, this would require a mapping from

the reduced model to the full model to be defined.

Trajectories from motion capture data can be used to define

nonlinear subspaces that can be treated as reduced models of

the full system. By identifying trajectories toward which other

trajectories tend to converge, we can find trajectories that are

probably optimal trajectories of the full system. Finding the

value function along one of these trajectories is computation-



ally inexpensive and should provide a good approximation of

the value function of the full system along the same trajectory.

We intend to experiment with this procedure for developing

control policies directly from human motion capture data.

Ultimately, we intend to use this methodology to control

the physical Sarcos Primus system. The poor dynamic match

between our simulation and the hardware will be a significant

obstacle. We intend to automatically identify the dynamics

of the robot along the two dimensional nonlinear subspaces

defined by motion capture trajectories, then solve these iden-

tified dynamics using a DDP trajectory optimizer. This will

provide a policy and value function along the subspace that

reflects the true dynamics of the hardware without exhaustively

identifying large regions of the robot’s state space.

An additional area of future research is identifying more

widely applicable formal measures of the similarity between

systems. The feature sets and similarity metrics described in

this paper either guarantee that the value functions of the

reduced and full system are precisely equal or provide no

bounds on approximation error. It is desirable to identify

similarity metrics and features that allow some bounds to be

given over large regions of state space. We are also interested

in applying machine learning techniques to feature selection

and salience determination.
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